

LTADS Primary Objective

- Characterize dry deposition to Lake
 - Pollutants affecting Lake clarity
 - Phosphorus, Nitrogen, Particles

Overview of Topics

- Process of Atmospheric Deposition
- What Controls Deposition Rates?
- Concentrations for Deposition Estimates
- Deposition Velocity Calculations
- Deposition Rate Estimates
- Uncertainties

Deposition to Lake Tahoe

- Transfer of mass from atmosphere to <u>water</u>
- Wet or dry processes
- Precipitation removes soluble species:
 - NO₃⁻, NH₄+, organic N
- Dry processes (uptake, diffusion, interception, impaction or sedimentation) remove gaseous species and particles:
 - gaseous HNO₃, NO₂, organic species, NH₃
 - particulate NH₄⁺ and NO₃⁻, Phosphorus, PM mass

What Sets Dry Deposition Rates?

- Concentration
- Largest Particles:
 - Settling velocity (PM size, density)
- Gases and Smaller Particles:
 - Multiple Rate Limiting Steps
- Deposition Velocity
 - Deposition Rate/Concentration
 - Normalized Rate Not a Process
 - Differentiate from Settling Velocity

Dry Deposition of Gases and PM

- 1. Turbulence mixes pollutants toward "sink"
 - Atmospheric turbulence set by wind speed, surface roughness (decreased by thermal stratification)
 - Aerodynamic Resistance
- 2. Diffusion across very thin laminar layer
 - Depth of layer (wind speed. surface elements)
 - Rate of diffusion (particle size, molecular weight)
 - Quasi-laminar Resistance ~ 0
- 3. Capture by surface
 - Pollutant solubility, chemical reactivity
 - Surface type, biophysical factors (stomatal opening)
 - Surface Resistance ~ 0 for species of interest

Three-Step Deposition Model

- Resistance Analogy
 - AerodynamicResistance
 - Laminar LayerResistance
 - SurfaceResistance

Rate of Deposition of Gases to Water

- Highly Reactive or Soluble?
 - Surface Resistance ~ 0
 - Aerodynamic Resistance Sets Rate
 - What determines turbulence?
 - Wind speed
 - Upwind roughness (fetch)
 - Thermal Stratification
- Relatively Insoluble Gas?
 - Surface Resistance Sets Rate

PM Deposition to Water

- Surface Resistance ~ 0 for Particles
- Quasi-Laminar, Aerodynamic Resistances
 - Wind Speed
 - Particle Size
- Potential for Water to Modify Processes and Resistances
 - Hygroscopic particle growth
 - White caps and spray

Calculation of Deposition

Deposition Flux (F) = C x V_d

- Hourly Velocities & Concentrations
- Hourly Deposition Rates
- Summed over year

LTADS Concentrations Used in Deposition Estimates

- Two-Week Concentrations (TWS)
 - Nitric Acid, Ammonia
 - PM mass, chemistry: PM2.5, PM10, TSP
- Hourly PM mass (BAMs)
 - PM2.5, PM10, TSP
 - 24 hour mass
 - Seasonal average of hourly mass

Gross Spatial Variation of Concentrations

- Zones selected for similarity
- Population densities
- Emissions activity levels
- Upwind sources
- Represented by measured concentrations (TWS)
- Modulated hourly by season by mass observations from BAMs

Seasonal PM Concentrations

Seasonal N Concentrations

Nitrogen Concentrations (by Quadrant, Species, and Season)

Winter BAM PM Observations at Lake Forest

Winter BAM PM Observations at SLT

BAM Ratios (South Lake Tahoe, Winter)

Winter BAM PM Observations at SLT

BAM Ratios (South Lake Tahoe, Winter)

Meteorological Measurements

- Wind speed, direction
- Temperature and humidity
- Surface & aloft observations
- For deposition velocity hourly observations over Lake
 - -Winds, air and water temperature

Wind Speed Frequency

Wind	U.S. Coast Guard Pier				
(m/s)	Annual	Spring	Summer	Fall	Winter
0 - 0.5	0.03	0.02	0.02	0.02	0.06
0.5 - 1.5	0.19	0.18	0.20	0.17	0.20
1.5 - 3	0.48	0.42	0.51	0.50	0.50
3 - 5	0.16	0.18	0.15	0.18	0.14
5 - 7	0.09	0.14	0.09	0.08	0.07
7 - 10	0.04	0.05	0.03	0.05	0.03
10 - 12	0.00	0.01	0.00	0.01	0.00
12 - 999	0.00	0.00	0.00	0.00	0.00
N =	8356	2206	1882	2126	2142

Wind	TDR1 Buoy				
(m/s)	Annual	Spring	Summer	Fall	December
0 - 0.5	0.03	0.02	0.02	0.02	0.11
0.5 - 1.5	0.20	0.18	0.17	0.17	0.33
1.5 - 3	0.51	0.42	0.44	0.50	0.81
3 - 5	0.17	0.18	0.12	0.18	0.23
5 - 7	0.10	0.14	0.08	0.08	0.11
7 - 10	0.04	0.05	0.03	0.05	0.04
10 - 12	0.00	0.01	0.00	0.01	0.00
12 - 999	0.00	0.00	0.00	0.00	0.00
N =	8354	2205	1882	2125	2142

Surface Winds

- Local mesoscale winds dominate
- Generally weak (< 3 m/s) winds ~ 70 % of hours
- Weaker at SS ~ 94 % < 3 m/s
- Dominant wind direction is offshore at most sites
 - $\sim 50 75 \%$ of hours
- Onshore is secondary direction
 - $\sim 20 30 \%$ of hours
- Sideshore infrequent
 - ~ 10 15 % of hours

Hourly deposition velocities of gases

- $V_d = F / (C C_0) => F = V_d * C$
- $V_d = 1/(R_a + R_b + R_c) => V_d = 1/(R_a)$
- $R_a = U / (U^*)^2$
 - Hourly values calculated from local wind obs
 - Two calculation methods used
 - Similarity theory not applicable near shoreline
 - Near shore define $1/R_a = 6$ cm/s, advection of TKE
 - May exaggerate deposition
- Near-shoreline concentrations applied to Lake

Conservative Assumptions

- No decrease of concentration offshore
- Dry deposition occurs 24 7 365
- Characteristic PM Diameters

	PM2.5	PMcrs	PMIrg
Lower	1	5	10
Best	2	8	20
Upper	2.5	10	25

 turbulence & deposition near shore are exaggerated during offshore flow (1/Ra for lower, best, upper as 3, 6, 10 cm/s)

Dry Deposition of Nitrogen (~120 MT/Year) by zone, season, chemical species

Nitrogen Deposition (by Quadrant, Species, and Season)

Deposition of PM

- Venkatram and Pleim (1999)
- $V_d = V_g/[1 e^{-Vg(Ra + Rd + Rc)}]$
- R_a = U / (U*)² estimated by two methods
- Near shore with offshore wind
 - 1/R_a defined as 6 cm/s
 - exaggerates advection of TKE in first km

Dry Deposition of PM Mass

(~700 MT/Y) by size, zone, and season

PM Deposition (by Quadrant, Size and Season)

Deposition (MT/year) Original Draft Estimate (assumed P 10, 20, 30 ng/m3)

Pollutant	Lower Estimate	Best Estimate	Upper Estimate
N (NH ₃ , NH ₄ ⁺ , HNO ₃ , NO ₃ ⁻)	70	100	150
P (P, PO ₄ -3)	0	1	3
PM (in 3 size ranges)	440	720	1060

Assumed P Concentration Revised Upward

- Estimate of P concentrations may be low due to laboratory analytical factors specific to P detection and P detection with Si.
- P LOD revised upward ~60 ng/m3 (Cahill)
- Average P concentration is ~40 ng/m3
 - Averaged all P measurements (with non-detects treated as ½ LOD, i.e., 20 ng/m3)
- P dry deposition estimate approximately doubled ~ 2.5 MT/year

Deposition (MT/year) (40 ng P/m3 as Lake average)

Pollutant	Lower Estimate	Best Estimate	Upper Estimate
N (NH ₃ , NH ₄ ⁺ , HNO ₃ , NO ₃ ⁻)	75	110	170
P (P, PO ₄ -3)	0.7	2.5	3.6
PM (in 3 size ranges)	440	720	1060

Revision, P & PM concentrations decrease offshore

- Comment: Shore concentration is overly conservative for PM at mid Lake
- Thunderbird assumed as lower Lake limit
- TB, Bliss unchanged
- Deposition in N & S zones was scaled downward based on PM differences by size fraction, LW-TB, SW-TB.
- Scaled downward by 25 % of difference

Dry Deposition of PM Mass & Phosphorus (MT/Yr)

(With Scaling of TB-SW, TB-LF Differences)

		Base Estimate	Scaled – 25%	
•	Mass PM2.5	70	60	
•	Mass PMcrs	200	170	
•	Mass PMIrg	450	360	
•	Mass TSP	720	590	

Scaling the previous phosphorus deposition estimate of 2.5 MT/year in the same manner predicts 1.2 MT/year.

Dry Deposition of PM Mass & Phosphorus (MT/Yr)

(With Scaling of TB-SW, TB-LF Differences)

	Base Estimate	Scaled – 25%	
Mass PM2.5	70	60	
 Mass PMcrs 	200	170	
 Mass PMlrg 	450	360	
 Mass TSP 	720	590	

P deposition based on PM deposition and P content per Emission Inventory

• P – PM2.5	0.05	0.04
• P - PMcrs	0.34	0.29
• P – PMIrg	0.86	0.68
• P – TSP	1.3	1.0

EI % P => PM2.5 = 0.07, PMcoarse = 0.17, PMlarge = 0.19% P

